Health Effects of Exposure to Radiation

Thunder Bay Regional research Institute Radiation Safety Program

Mike Campbell (Radiation Safety Officer)

Updated Feb 2011

In This Session... Radiation dose

- Indirect effects of radiation
- Direct effects of radiation
 - Hereditary effects
 - Somatic effects
 - Stochastic effectsDeterministic effects
- n

Radiation Dose

- Radiation dose, in the simplest terms, can be thought of as the amount of radiation an individual is exposed to either from:
 - · Work activities with radioactive materials
 - Medical tests such as from a diagnostic x-ray
 - Background radiation

Radiation Dose

- In living tissue, this energy transfer or radiation dose can result in damage to molecules and cells
- In radiation safety, there are three categories of radiation dose:
 - Absorbed dose
 - Equivalent dose
 - Effective dose

Absorbed Dose

- Absorbed dose is a measure of the amount of radiation energy transferred to matter per unit mass
- The unit of absorbed dose is the gray (Gy)

1 Gy = 1 J/kg

• Where J (joule) is a unit of energy

Measuring Damage

- Different types of radiation (alpha, beta, neutrons, gamma, x-rays) will, by their nature, cause different amounts of damage in living tissue
- 1 Gy of absorbed dose from an internal alpha radiation source causes more damage in tissue than 1 Gy of absorbed dose from beta, gamma or x-ray radiation

Equivalent Dose

- Measuring the absorbed dose alone provides little information about the biological damage to living tissue
- There is a need for a common scale with which to measure the radiation dose to living tissue independent of the radiation type
- This brings us to the equivalent dose

Equivalent Dose

- The *equivalent dose* is simply the *absorbed dose* multiplied by a radiation weighting factor
- The radiation weighting factor helps to account for the different levels of biological damage caused by different types of radiation
- The unit of equivalent dose is the *millisievert* (mSv)

10

12

Radiation	Energy	WR
Gamma / x-ray	All	1
Beta	All	1
Alpha particles (internal)	All	20
Õ		

Equivalent Dose

- Equivalent dose allows us to compare radiation doses from different types of radiation.
 - 1 mSv of equivalent dose from gamma radiation is comparable to 1 mSv of equivalent dose from beta or alpha radiation, in terms of biological damage

Radiation Dose to Tissues

- We now know that different types of radiation cause different levels of damage in living tissue
- In addition, some tissues in the body are more sensitive to radiation than others
 - Reproductive organs are more sensitive to radiation than the skin or the lungs

13

14

15

Radiation Dose to Tissues

- The equivalent dose does not account for the varying sensitivities to radiation exposure of different organs or tissues in the body
- There is a need for a common scale with which to measure the overall risk to a person's health, regardless of which tissue or organ is exposed
- This takes us to the effective dose

Effective Dose

- The *effective dose* is the *equivalent dose* multiplied by a tissue weighting factor
- The tissue weighting factor helps to account for the varying sensitivities to radiation exposure of the different tissues and organs
- The unit of effective dose is the *millisievert* (mSv)

Effective Dose

- Effective dose accounts for the type of radiation and the tissue or organ irradiated
 - 1 mSv of effective dose is just 1 mSv, regardless of whether the dose was delivered to the lungs, thyroid, bone marrow, or any other tissue.
 - Unfortunately, mSv is the unit equivalent dose as well as effective dose though they are not equal

16

17

Molecular Effects of Irradiation

- In living systems, biological damage can occur as a result radiation-induced damage to molecules and cells
- Radiation may cause damage to molecules or cells either directly or indirectly

- Hereditary effects are those which do not become apparent until future generations are born
- Possible result of radiation induced damage to the DNA molecule in the germ cells (sperm, ova).

Somatic Effects Somatic effects are those which are

- experienced directly by the people exposed to the radiation
- There are two types of somatic effects:
 - Stochastic effects
 - Deterministic effects

22

23

24

Stochastic Effects

- A stochastic effect is one which may or may not occur
 - There is a probability attached to the event
- Examples of stochastic events:
 - Winning the lottery
 - Developing cancer from smoking
 - Developing cancer from radiation exposure

Stochastic Effects

- All we can say is that radiation exposure increases the likelihood of developing a disease such as cancer
- The greater the exposure, the greater the likelihood
- We can never be certain that an effect will occur

25

26

27

Radiation-Induced Cancers

- Early radiation scientists
 - Many died from skin, bone, and blood cancers.
- Radium watch dial painters
 - Many died of bone cancer 8 to 40 years later.
- UK X-ray patients
 - 6,500 patients were treated with 3 Gy x-rays.
 - 30 developed leukemia (7 expected without x-rays).
- Japanese bomb survivors (80,000 people)
 - 350 cancer deaths, double the expected figure.

Risk: Cancer from Radiation

- The risk of developing a fatal cancer as a result of exposure to radiation is thought to be approximately 4% per 1000 mSv
- Consider a person who worked for 50 years and received 20 mSv per year
 - This person's total lifetime radiation dose would be 1000 mSv
 - This person could have an extra 4% chance of developing a fatal cancer

Risk: Cancer in General

- Note that 25% of all people develop a fatal cancer in their life
- So, this person's risk of developing cancer becomes 29%, instead of 25%

28

• No profession is risk free

Risk of Death at Work

Occupation	Risk of Death per Year
Finance	1 in 60,000
Trade	1 in 40,000
2 mSv radiation per year	1 in 12,000
Manufacturing	1 in 11,000
Construction	1 in 3,000
20 mSv radiation per year	1 in 1,200
Fishing and hunting	1 in 500

Risk	of Death	from A	ccidents
------	----------	--------	----------

Hazard	Risk of Death Per Year
Accidents on the road	1 in 5,000
Accidents at home	1 in 11,000
1 mSv per year legal limit (dose limit for public)	1 in 20,000
Accidents at work	1 in 24,000
0.05 mSy par year	1 in 400.000

Acute Exposure

• Exposure to a high dose delivered within seconds, minutes or days

33

- Possible deterministic effects
 - Blood changes
 - Nausea
 - Diarrhea
 - Hair-loss
 - Malaise Death
 - .

Acute Dose	Effect	
< 250 mSv	No detectable effects	
> 3,000 mSv	Chance of death 50% and above	
> 6,000 mSv	Death an almost certainty, time between exposure and death depends on amount of dose	

